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1. New combustion regimes and kinetic studies of 
in situ plasma discharge in counterflow flames  
(Tasks 8 and 9: Kinetic model validation) 

   Today’s  Presentation 

2. Multispecies diagnostics in a flow reactor with Mid-IR 
and molecular beam mass spectroscopy  (MBMS) 

         (Task 3: Multispecies measurements) 

3. Ignition enhancement and minimum ignition energy 
by plasma discharge 

        (Task 6: Ignition, Flame Initiation and the Minimum 
Ignition Energy ) 
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Scramjet, afterburner 

Plasma generated 

species: 

O, H, O2(a∆g) … 

Most combustors 

Disappear of the “S-curve” 

the  classical S-curve  

. Can plasma assisted combustion enhances sublimit combustion so that the 
ignition and extinction limit disappear on the classical S-curve? 

The new  monotonic ignition curve  

. What happens when JP-8 has low temperature ignition chemistry?   
  How does PAC interact with low temperature chemistry ? relevant or not? 
  

Technical questions:  
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1. New flame and ignition regimes with in situ nano-second pulsed discharge 

Ignition 

Extinction 



Experimental method (in-situ plasma discharge) 
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 25.4 mm 

P = 72 Torr 

f = 24 kHz 

 Power ~ 17 W (repetitive pulses) 

Laser beam 

E = 7500 V/cm, E/N ~ 900 Td 
Peak Voltage 

= 7.8 KV 



OH PLIF measurement (CH4/O2 sublimit flames) 
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a= 400 1/s, Xo = 55%, Xf = 20%, f = 24 kHz, P=72 Torr, UV power = 2 mj/pulse  

Top burner 

Bottom burner (fuel) 

OH 

fluorescence 

at Q1(6) 

S-shaped ignition/extinction curve measurement: OH PLIF 
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plasma/flame chemistry 

Good agreement for flame 
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Enhancement of OH formation Direct image 



Numerical modeling of PAC and path flux analysis 
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XO2 = 0.34, XCH4 = 0.16, P = 72 Torr, f = 24 kHz, a = 400 1/s  

no flame, but reaction zone was built up by radicals generated from plasma 

e + CH4CH3 + H + e 

fuel oxidizer 

e + O2O+O(D) + e 

Electron and ion impact dissociation are the key in PAC .  

Before ignition 

LTO 



New ignition transition curve with plasma assisted combustion 
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The S-curve transition 

Experimental observation  
A new combustion regime 

What if a fuel (JP-8) has low temperature chemistry? 

•Extended flammable regine 
•No extinction limit 



From CH4 to jet fuel, using DME (LTI and gas phase) as example 
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CH4 

+ radicals 

Slow chain 

branching 

CH4 

+ electrons, 

radicals 

+ radicals 

fast chain 

branching 

Plasma 

Large hydrocarbons 

R + O2 

RO2 

Slow chain 

branching 

Large hydrocarbons 

R + O2 

RO2 

+ electrons, 

radicals 

fast chain 

branching 

Plasma 

How does LTC affect 

ignition and extinction? 

Different chemiluminescence  

before DME ignition 

Same chemiluminescence  

before CH4 plasma assisted ignition 

+ radicals 

(O/OH/H) 

CH3O/HCO CH3O/HCO 

+ radicals 

Low Temperature 

Chemistry (LTC) 

How does low temperature chemistry make a difference? 

slow faster 
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CH2O PLIF at 355 nm from Nd:YAG laser 

10 

Top burner 
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CH2O formation in CH4 and DME ignition … 
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CH2O measurements: ignition and extinction 
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Kinetics of plasma assisted low temperature combustion 
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R+O2 CH2O+radicals 

90% of total reaction flux 

1000 times faster! 

Plasma assisted combustion dramatically 

changed the low temperature chemistry 

Slow 

LTC 

• LTC in Plasma assisted combustion 

• LTC in turbulent combustion at engine 

time scales 

 

0-D modeling of DME/O2/He (0.03/0.1/0.896) 

ignition,  P = 72 Torr, T0 = 650 K 
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Fixed Xf on fuel side, while 

changing XO2 on the oxidizer side 

Results can be extended to other large fuels 

Prompt radical production from plasma 

Fast H abstraction (formation of R) 

Fast LTC (RO2 reactions) 

Sensitive to O2 

concentration? 

Plasma  

Faster 

LTC 

Turbulent transport 

Implication 



2. Multispecies diagnostics in a flow reactor  
         (Task 3: Multispecies measurements) 

In situ intermediate species diagnostics beyond radicals 



2a Multispecies Diagnostics in Repetitively-pulsed Nanosecond 
Discharge in a  Laminar Flow Reactor 

Reactor/Diagnostics 
 Reactor size: 58.2 x 14 x 152 mm3 

 Fuel: C2H4 

 Pressure: 60 Torr 

 Flow speed in the reactor: ~40 cm/s 

 Mid-IR QCL laser: 1296 cm-1 – 1423 cm-1 

 Multi-pass Mini-Herriott cell (12.7 mm OD) 

 

 

Mini-Herriott cell showing 24 pass 
configuration 

 

Experimental setup 

Detector

QCL Laser

Diluents

Diluents

Oxidizer

Fuel

Vacuum
Pump

Electrode

Vacuum
Chamber

Nanosecond-
Pulsed

Power Supply

Pulsed Signal 
Generator

Digital Delay 
Generator

Function 
Generator

Oscilloscope

Germanium
Etalon

Detector

Observation
Window

Plasma Properties 
• Electrode (40 x 45 mm2) 

• Repetitively -pulsed nanosecond 
DBD discharge 

• 0- 40 kHz pulse repetition rate 

• 12 nanosecond pulse duration 

• 5-20 kV peak voltage 

 



Direct and ICCD Images of Plasma Discharge in a Reactor 
 

Stoichiometric mixtures: C2H4/O2 with 75% AR, 60 Torr, Vmax= 6 kV 

 
•Direct Image:  1 kHz, 3.6 mJ/pulse, 2 s exposure time. 
•ICCD images: Gate time = 100 ns, Gain = 250 
 

1000 Hz 

2000 Hz 

3000 Hz 

1000 Hz Direct 

ICCD 

Cathode 

Anode 



Absorption Spectroscopy 

Beer-Lambert Law 

Iν = Transmitted Signal 

I0ν = Laser Signal 

α = Absorption coefficient 

i  = Denotes absorption line with center frequency νi 

ν = Light wavelength 

S = Line strength of absorption line 

T = Temperature 

L= Path length of light 

N = Number density of absorbers 

g = Voigt profile line broadening function 

• Multispecies diagnostics: Line strengths from HITRAN database for H2O, C2H2, CH4, 
C2H4, C2H6, CO2, CO, O3, OH, HO2, H2O2, CH2O, NO, N2O, NO2 

• Temperature measurements: Line strength on Si(T) for temperature 
measurements 

• Species sensitivity:  Multipass and Wavelength modulations 
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Absorption spectrum and wavelength scan 

0

0.1

0.2

0.3

0.4

0.5

0.6

-0.01 -0.005 0 0.005

Si
gn

al
 [

A
rb

. 
U

n
it

s]

Time [s]

Absorption
Background
Etalon
Laser Scan

0

100

200

300

400

0 0.001 0.002 0.003

Sc
an

 R
at

e
 [

cm
-1

/s
]

Time [s]

Etalon Data

Polynomial Fit

CH4 

C2H2 

Calibrated  wavelength vs. time 
Signal vs. laser scan time and etalon fringes 



H2O: 1338.28 cm-1 
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Multipass Mini Herriott Cell Signal and Noise Properties 
12.7 mm in cell diameter 

• Increase of pass number increase the 
sensitivity but a very high pass 
number causes large etalon noise 
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CH4/C2H2 production by plasma: pyrolysis vs. oxidation 

0

5000

10000

15000

20000

25000

30000

0 1000 2000 3000 4000

M
o

le
 F

ra
ct

io
n

 [
p

p
m

]

Plasma Frequency [Hz]

[C2H2] with O2

[C2H2] w/o O2
0

100

200

300

400

0 1000 2000 3000 4000

M
o

le
 F

ra
ct

io
n

 [p
p

m
]

Plasma Frequency [Hz]

[CH4] with O2

[CH4] w/o O2

•Ar/C2H4, fuel mole fraction of 0.0625, 60 torr 
•Ar/O2/C2H4 mixtures, 25% reactants and φ=1. Same fuel concentration  



Effects of plasma frequency on temperature and species 
 Ar/O2/C2H4 mixtures with 25% reactants and φ=1, 60 torr  
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2b. Measurements of H2O2 and Intermediate Species in 

Low Temperature  Dimethyl Ether (DME) Oxidation 
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Task 3. Species Measurements  by molecular beam mass spectrometry (MBMS)  



The role of intermediate species, HO2, H2O2 in low/high 
temperature kinetics 

Low temperature 

High temperature 

Intermediate temperature 

H2O2 /H2O2 formation H2O2  2OH 

Transition from low T to 

high T ignition Low T ignition 

Schematic of low temperature ignition process 

However, measurements of H2O2 and HO2  is difficult… 

•Indirect measurement of H2O2: Sensitive H2O absorption at 2.5 um  (Hong et al, 2009). 

•Direct measurement: UV Photo fragmentation-OH LIF, (Li, et al, PCI, 2012). 

                        Difficult to separate H2O2 from HO2 , and other large hydrocarbons 
 



Experimental setup 
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mGC 

P = 1 atm, τ = 1.7 s 

Cross validation 

with MBMS 



Mass spectrum and calibration 
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S : signal intensity 

D : mass discrimination factor 

 : cross sections 

 : mole fractions 

DME/O2/He (0.02/0.1/0.88) at  

T = 590 K and P = 1 atm 
Calibration: 

H2O2: 

H2O2/H2O (30.8% wt) + He  

CH2O, CH3OCHO:  

Measured D, σ from Ref.[1] 

Fragmentation: 

Constant ratio, can be removed 

from post processing 

Corrected H2O2 concentration via 

2H2O2 2H2O + O2 and  

subtraction of 34O2 signal 

1. http://physics.nist.gov/ionxsec 

Mass overlap: 

DME & HCOOH, N2 & CO 

(HCOOH) 



Major species measurements 

27 

0-D Models show reasonably good agreement for LTC temperature window and  peak reactivity 

Yasunaga et al model has overall higher reactivity and wider LTC temperature window  

High CO2 

production 

Good agreement between micro-GC and MBMS quantification → validation of MBMS techniques 

2-D simulations give good agreement with data; 0-D simulations are semi-quantitative 
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H2O2 measurement 
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Good agreement for H2O2 formation 

Different predictions from different models 
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2c. Development of a Mid-IR Faraday Rotational Spectroscopy  
Method to quantify HO2 
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Brian Brumfield, Wenting Sun, Gerard Wysock, and Yinguang Ju,  submitted to JACS, 2012 

7.1 μm 

Mid infra-red Faraday Rotation Spectroscopy (FRS), 1396 cm-1 

Quantitative HO2 Measurement (very challenging!): 

 2L + 1 

paramagnetic species  

Polarization rotation detection  

Linearly-polarized laser light 

610 Hz oscillating magnetic field 

125 Gauss  rms 



Sub-ppm level HO2 measurement in DME/air 
flow reactor (1atm, 748K) 

H+O2(+M) = HO2(+M),  

HCO+O2= CO+HO2 
HCO+(M)=CO+H 



Temperature Dependence of HO2 Signal in a flame reactor 

Weighted observations 

Raw Signal Observation 

Game changer?! 



3. Ignition Enhancement and the critical ignition energy by Pulsed 
Nanosecond Discharge - Pulse Detonation Combustor/Engine 

 
(with Timothy Ombrello, Fred Schauer, and John Hoke of the AFRL) 

Thrust 1 Task 6. Ignition Initiation Time and Minimum Ignition Energy  
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Sample Voltage Trace 

• Motivation: 
– Demonstrate non-equilibrium plasma enhances 

ignition in a real PDE vs. a spark plug. 
– Proof-of-concept studies have shown decrease in 

ignition time for propane/air mixtures in a 
quiescent environment and atmospheric pressure 
using repetitively pulsed nanosecond discharges1 

– Depositing more energy faster has potential 
benefits for short residence-time, highly turbulent 
environments present in a range of propulsion 
devices 

• Power Supply: 
– Nanosecond power supply delivers 12-ns pulses 

up to 40 kV (peak) & 40 kHz 
– 1-5 mJ/pulse deposited into gas  

• Experiment: 
– Spark plug machined into point-to-point electrode 

geometry with a 1.4 mm gap 
– Nanosecond discharge compared with lab 

standard Multiple Spark Discharge (MSD)  
 Consumes  115 mJ/pulse but deposits only 4-8 

mJ/pulse into gas 
 Gives multiple sparks of the same energy each. 

Number of sparks cannot be controlled 

– Ion probes used to quantify wavespeed 
– Ignition is determined when pressure trace 

reaches a slope of 5 V/s on PCB trace 
– Schlieren imaging performed at 100,000 fps 

 
 
1. S. V. Pancheshnyi, D. A. Lacoste, A. Bourdon, C. O. Laux, IEEE Trans. On Plasma 
Science, vol. 34 (2006). 



Aviation gasoline/Air Mixtures 

Eq. Ratio=1.0 Eq. Ratio=1.1 

 Equivalence ratio is varied along with number 
of pulses at fixed plasma energy/pulse and 
plasma frequency 

 Nanosecond pulser decreases ignition time 
up to 25% compared to MSD 

• Pulsed discharge allows more energy to be coupled 
into gas in a shorter time period than MSD ignition 
system.  

• Advantageous for the turbulent, small residence-
time flows in the PDE 

 Plasma properties: 
• Plasma energy: 2.8 mJ/pulse on average 
• Plasma frequency: 40 kHz 

 MSD spark system currently in use: 
• Spark energy: 5.7 mJ/spark 
• Multiple sparks (1-12 possible) 
• Spark frequency: 0.87 kHz 
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plasma frequency 
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 Total energy = 
energy/pulse x 
number of pulses 

  Ignition time 
decreases with 
total energy for ns-
pulser case 
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Schlieren Imaging 

Comparison with conventional ignition 
Φ=1 Ethylene/Air 
Top: ns pulser, 20 pulses at 40 kHz 
Bottom: MSD, 3 sparks at 0.87 kHz  
Time shown is 3 ms after first discharge 

Effect of high frequency 
Φ=1 Methane/Air  
Top: ns pulser, 5 pulses at 40 kHz  
Bottom: ns pulser, 5 pulses at 1 kHz 
Time shown is 7 ms after first discharge 

Lean equivalence ratio, equal energy 
Φ=0.8 Methane/Air 
Top: ns pulser, 6 pulses at 40 kHz  
Bottom: MSD, 3 sparks at 0.87 kHz 
Time shown is 7 ms after first discharge 

MSD, 6 mJ/spark 

ns pulser, 3 mJ/pulse, 40 kHz 

ns pulser,  3 mJ/pulse, 1 kHz 

ns pulser, 3 mJ/pulse, 40 kHz 

ns pulser, 3mJ/pulse, 40 kHz, 6 pulses 

MSD, 6 mJ/spark, 0.87 kHz, 3 sparks 



Ignition/ Flame initiation/Critical radius 

 

• Three distinct flame regimes 
– Regime I 

• Spark assisted ignition kernel 

– Regime II 
• Transition from ignition kernel 

to normal flame 
• Weak flame regime 

– Regime III 
• Self-sustained stable  

propagating flame 

– Consistent with previous study2 

 

• Ignition  failure vs. Critical radius 
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Regime II 

Regime I Regime III 

Ignition 

Ignition 

Linear 

extrapolation Regime II 

Rapid rise 
2 ms 5.7 ms 

Critical radius 
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Measurements of critical flame radius for ignition vs. pressure 

Vaporization

chamber

TC
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Liquid fuel

injection

N2/O2/

Vacuum 

pump

Fan

electrodes

Oven

Heater

Heated

tube

Pressure 

release 
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HeaterTC: Thermocouple

P: Pressure gauge

• What is the effect of 
plasma discharge volume? 
 

• What is the effect of 
turbulence? 
 

n-decane/air 
  0.7 



Conclusions 
1. In situ discharge can significantly increases the kinetic effect of 

plasma and achieve sublimit combustion.  
 

2. A new monotonic ignition transition regime was observed with PAC. 
 
3. PAC enhances low temperature chemistry and may change combustion 

kinetics in engine conditions with very short residence time. 
 
4. PAC shortens ignition delay time in turbulent PDE combustion 

environment. Large volume discharge helps to drive the ignition kernel 
to overcome the critical flame radius at reduced pressure. 

 
5. A reactor coupled  mid-infra red absorption spectroscopy and MBMS 

system are developed and successfully measured H2O2 and other 
intermediate species. 

 
6. A mid-infrared Faraday rotation spectroscopy method is developed and 

successfully measured HO2  in a flow reactor. 
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Measurement Technique 

• Current and voltage are measured for each condition 
– Voltage probe: LeCroy high voltage probe (PPE20KV) 
– Current probe: Pearson Coil (Model 6585) 

• Peak voltage for all experiments ≈ 6 kV 
• The total energy is computed by integrating the power over a long enough 

time scale for all reflections to be included 
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Wavenumber, cm-1 

H2O lines at 1338.5 cm-1 and 1339.15 cm-1  

H2O and temperature measurements with plasma discharge 

•Laser scan: 100 Hz, f=1 MHz, tRC= 7.5 μs  
•Voigt profile fitting HITRAN for number density and temperature 

HITRAN: J. Quant. Spectrosc. Radiat. Transfer, 111, 2139–2150 (2010). 
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Laser was scanned at 0.1Hz and modulation at 
along with using lock in amplifier 

Wavelength modulated absorption measurement of CH4 

)2sin()( 0 ftat   f=50 kHz – 1 MHz 
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Results for Continuous Plasma 

• Results are for Ar/O2/C2H4 mixtures with 25% reactants and φ=1 
• The flow speed is 40 cm/s and the pressure is 60 Torr 
• Per pulse energy is dependent on plasma repetition frequency 

– Seed electrons and ions left over from previous pulse provide for easier 
breakdown 

– This effect levels off after about 1000 Hz 

• At high pulse repetition frequency, temperature scales linearly with 
plasma power 
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Classical S-curve 
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hysteresis between ignition and extinction: S curve 

Rayleigh Scattering[1,2] 
method for T 
measurement at 532 
nm from Nd:YAG laser 

[1] R.B. Miles, W.R. Lempert, J.N. Forkey, Meas. Sci. Technol. 2001 [2]J.A. Sutton, J.F. Driscoll, Exp Fluids 2006 
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S-curve transition 

47 

Relationship between OH density, local maximum temperature and fuel mole 
fraction, P = 72 Torr, f = 24 kHz, a = 400 1/s  

He/O2 = 0.45:0.55  He/O2 = 0.38:0.62  

ignition and extinction points were 
pushed to lower fuel concentrations 

monotonic ignition and extinction curve 
(monotonic S-curve)  

Can the hysteresis be removed ? 
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1. New flame and ignition regimes with in situ nano-second pulsed discharge 

a= 400 1/s, Xo = 55%, Xf = 20%, f = 24 kHz, P=72 Torr, 

UV power = 2 mj/pulse  

Radicals produced by in situ discharge :  

Dramatically increased the reactivity of CH4 (no extinction limit) 

Coupling effect 

Radical generation 

CH4 

CH3O/HCO 

+ radicals 

(O/OH/H…) 

+ radicals 

chain 

branching 

Large hydrocarbons 

R 

+ radicals 

+ O2 

RO2 

chain 

branching 

Low Temperature 

Chemistry (LTC) How does LTC affect 

ignition and extinction? 

Jet fuels 

Different chemiluminescence  

before DME ignition 

Same chemiluminescence  

before CH4 ignition 

CH2O 

Ignition 



Kinetic effect of plasma assisted low temperature  combustion for CH3OCH3 ignition 
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=40%,  varying Xf 
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 P = 72 Torr, a= 250 1/s, f = 34 kHz, XO2
=60%,  varying Xf 
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Plasma assisted low 

temperature chemistry 
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Smooth transition 

between LTC to HTC 

Increased radical 

production 

R+O2 CH2O+radicals 

90% of total reaction flux 

1000 times faster! 

Plasma assisted combustion dramatically changed 

the ”SPEED” of low temperature chemistry 

CH2O PLIF  measurements at 355 nm to characterize LTC 

Slow 

LTC 

Important for  

•PAC  

•Turbulent combustion 

 at small time scales 

Kinetic studies 



Importance of LTC and the critical role of H2O2 
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H2O2 is stable H2O2  2OH 

Transition from low T to 

high T ignition Low T ignition 

H2O2: low T 

chemistry indicator 

Low Pressure MBMS for flame 

Different masses 

How to detect? 
Direct measurement: 

Laser absorption at 7.8 um at low 

pressure  non-reactive flow (Aul, et 

al, PCI, 2011) 

 

Photofragmentation-LIF  
(Li, et al, PCI, 2012) 

Indirect measurement: 

Sensitive H2O absorption 

at 2.5 um 
(Hong et al, 2009) 

H2O2/H2O/Ar 

mixture in 

shock tube 

Interference with HO2 and H2O 

Challenging for combustible mixtures Mass spectrometry 

H2O2 

LTC 

DME 

MBMS 

Calibration (H2O2 decomposes > 55 oC)1 

HCCI 

1. Ludwig, et al, JPC. A 2006 

In-situ and high pressure? 


